1. 10 – 5x/2 ≥ 0
(20 – 5x)/2 ≥0
20 – 5x ≥ 2
-5x ≥ -18
X ≥ 18/5
X ≥ 3.6
INTERVALO DE SOLUCION: [3.6,∞)
5. 4 > (2 - 3x)/7 ≥ 2
28 > 2 – 3x ≥ 14
26 > -3x ≥ 12
-8.66 > x ≥ -4
PRUEBA: 4 > [2 – 3(-5)]/7 ≥ 2
28 > 2 + 15 ≥ 14
28 > 17 ≥ 14 = cumple la función
· 4 > [2 – 3(-3)]/7 ≥ 2
28 > 2 + 9 ≥ 14
28 > 11 ≥ 14 = no cumple la función
INTERVALO DE SOLUCION: (-8.66, -4]
6. x2 ≥ -15x – 56
X2 + 15x + 56 ≥ 0
a= 1
b= 15
c= 56
b2 – 4ac
(15)2 – 4(1)(56)
225 – 224
= 1 = 1> 0 = tiene dos soluciones
(-b ± √b2- 4ac)/2a
[-15 ± √(15)2 – 4(1)(56)]/2
[-15 ± √1]/2
x1 = (-15 + 1)/2 = -14/2 = -7
x2 = (-15 – 1)/2 = -16/2 = -8
PRUEBA: (-6)2 + 15(-6) + 56 ≥ 0
36 – 90 +56 ≥ 0
92 – 90 ≥ 0
2 ≥ 0
· (-9)2 + 15(-9) + 56 ≥ 0
81 – 135 + 56 ≥ 0
137 – 135 ≥ 0
2 ≥ 0
INTERVALO DE SOLUCION: (-∞, -8] U [-7,∞)
10. -4/(1 + 2x) ≥ 0
-4 ≥ 1 + 2x
-2x ≥ 1 + 4
-2x ≥ 5
x ≥ -2.5
INTERVALO DE SOLUCION: [2.5,∞)
15. [(2x +1)2 (x – 1)]/[x(x2 – 1)] ≥ 0
[4x2 + 4x + 1 (x – 1)]/ x[(x +1)(x – 1)] ≥ 0
(4x2 + 4x + 1)/ (x2 + x) ≥ 0
4x2 + 4x + 1 ≥ x2 + x
4x2 – x2 +4x –x + 1 ≥ 0
3x2 + 3x + 1 ≥ 0
a= 3
b= 3
c= 1
b2 - 4ac
(3)2 – 4(3)(1)
9 – 12
= -3 = -3 < 0 = no tiene solución
18. [x(x2 – 9)]/[(x2 + x +1)(x – 1) ≥ 0
(x3 – 9x)/(x3 – x2 + x2 – x + x – 1) ≥ 0
(x3 – 9x)/(x3 – 1) ≥ 0
x3 – 9x ≥ x3 – 1
-9x ≥ -1
-9x + 1 ≥ 0
a= 0
b= -9
c= 1
b2 – 4ac
81 – 0
= 81 = 81 > 0 = tiene dos soluciones
(-b ± √b2- 4ac)/2a
[9 ± √(-9)2 – 4(0)(1)]/2(0)
(9 ± √81)/0
x1= (9 + 9)/0 = ∞
x2 = (9 – 9)/0 = 0
INTERVALO DE SOLUCION: [0, ∞)
20. (2 – x)/(x – 3) ≤ -2/x
x(2 – x) ≤ -2(x – 3)
2x – x2 ≤ -2x + 6
-x2 + 4x – 6 ≤ 0
a= -1
b= 4
c= -6
b2 – 4ac
(4)2 – 4(-1)(-6)
16 – 24
= -8 = -8 < 0 = no tiene solución
25. (5 + x2)/(2x + 4) ≤ 0
5 + x2 ≤ 2x + 4
X2 – 2x + 1 ≤ 0
a= 1
b= -2
c= 1
b2 – 4ac
(-2)2 – 4(1)(1)
4 – 4
= 0 = 0 tiene una solución
(-b ± √b2- 4ac)/2a
[2 ± √(2)2 – 4(1)(1)]/2
(2± √0)/2
= 2/2 = 1
INTERVALO DE SOLUCION: (-∞, 1]
30. (x2 – x + 3)/(x – 3) ≤ (18 + x2)/(x – 3)
(x – 3)(x2 – x + 3) ≤ (18 + x2)(x – 3)
x2 – x + 3 ≤ 18 + x2
-x ≤ 18 – 3
(-1)(-x ≤ 15)
x ≥ -15
INTERVALO DE SOLUCION: [-15, ∞)
35. [(4x - 4)/x] + [(1 + x)/x2] ≤ [4x/(1 + x)] + [4/(x2 + x3)]
[4x – 4 + x(1 + x)]/x ≤ [4x + (x + x2)(4)]/x
(4x – 4 + x + x2)/x ≤ (4x + 4x + 4x2)/x
(x2 + 5x – 4)/x ≤ (4x2 + 8x)/x
x(x2 +5x – 4) ≤ x(4x2 + 8x)
x2 + 5x – 4 ≤ 4x2 + 8x
-4x2 + x2 + 5x - 8x – 4 ≤ 0
-3x2 – 3x – 4 ≤ 0
a= -3
b= -3
c= -4
b2 – 4ac
(-3)2 – 4(-3)(-4)
9 – 48
= -39 = -39 < 0= no tiene solución