domingo, 7 de marzo de 2010

EJERCICIOS DE REEMPLAZO MARZO 5 DE 2010

1. 10 – 5x/2 ≥ 0

(20 – 5x)/2 ≥0

20 – 5x ≥ 2

-5x ≥ -18

X ≥ 18/5

X ≥ 3.6


INTERVALO DE SOLUCION: [3.6,)






5. 4 > (2 - 3x)/7 ≥ 2

28 > 2 – 3x ≥ 14

26 > -3x ≥ 12

-8.66 > x ≥ -4



PRUEBA: 4 > [2 – 3(-5)]/7 ≥ 2

28 > 2 + 15 ≥ 14

28 > 17 ≥ 14 = cumple la función



· 4 > [2 – 3(-3)]/7 ≥ 2

28 > 2 + 9 ≥ 14

28 > 11 ≥ 14 = no cumple la función


INTERVALO DE SOLUCION: (-8.66, -4]








6. x2 ≥ -15x – 56

X2 + 15x + 56 ≥ 0

a= 1

b= 15

c= 56


b2 – 4ac

(15)2 – 4(1)(56)

225 – 224

= 1 = 1> 0 = tiene dos soluciones


(-b ± √b2- 4ac)/2a

[-15 ± √(15)2 – 4(1)(56)]/2

[-15 ± √1]/2

x1 = (-15 + 1)/2 = -14/2 = -7

x2 = (-15 – 1)/2 = -16/2 = -8


PRUEBA: (-6)2 + 15(-6) + 56 ≥ 0

36 – 90 +56 ≥ 0

92 – 90 ≥ 0

2 ≥ 0


· (-9)2 + 15(-9) + 56 ≥ 0

81 – 135 + 56 ≥ 0

137 – 135 ≥ 0

2 ≥ 0


INTERVALO DE SOLUCION: (-, -8] U [-7,)






10. -4/(1 + 2x) ≥ 0

-4 ≥ 1 + 2x

-2x ≥ 1 + 4

-2x ≥ 5

x ≥ -2.5


INTERVALO DE SOLUCION: [2.5,)







15. [(2x +1)2 (x – 1)]/[x(x2 – 1)] ≥ 0

[4x2 + 4x + 1 (x – 1)]/ x[(x +1)(x – 1)] ≥ 0

(4x2 + 4x + 1)/ (x2 + x) ≥ 0

4x2 + 4x + 1 ≥ x2 + x

4x2 – x2 +4x –x + 1 ≥ 0

3x2 + 3x + 1 ≥ 0

a= 3

b= 3

c= 1


b2 - 4ac

(3)2 – 4(3)(1)

9 – 12

= -3 = -3 < 0 = no tiene solución






18. [x(x2 – 9)]/[(x2 + x +1)(x – 1) ≥ 0

(x3 – 9x)/(x3 – x2 + x2 – x + x – 1) ≥ 0

(x3 – 9x)/(x3 – 1) ≥ 0

x3 – 9x ≥ x3 – 1

-9x ≥ -1

-9x + 1 ≥ 0

a= 0

b= -9

c= 1


b2 – 4ac

81 – 0

= 81 = 81 > 0 = tiene dos soluciones


(-b ± √b2- 4ac)/2a

[9 ± √(-9)2 – 4(0)(1)]/2(0)

(9 ± √81)/0

x1= (9 + 9)/0 =

x2 = (9 – 9)/0 = 0


INTERVALO DE SOLUCION: [0, )





20. (2 – x)/(x – 3) ≤ -2/x

x(2 – x) ≤ -2(x – 3)

2x – x2 ≤ -2x + 6

-x2 + 4x – 6 ≤ 0

a= -1

b= 4

c= -6


b2 – 4ac

(4)2 – 4(-1)(-6)

16 – 24

= -8 = -8 < 0 = no tiene solución






25. (5 + x2)/(2x + 4) ≤ 0

5 + x2 ≤ 2x + 4

X2 – 2x + 1 ≤ 0

a= 1

b= -2

c= 1


b2 – 4ac

(-2)2 – 4(1)(1)

4 – 4

= 0 = 0 tiene una solución


(-b ± √b2- 4ac)/2a

[2 ± √(2)2 – 4(1)(1)]/2

(2± √0)/2

= 2/2 = 1



INTERVALO DE SOLUCION: (-, 1]





30. (x2 – x + 3)/(x – 3) ≤ (18 + x2)/(x – 3)

(x – 3)(x2 – x + 3) ≤ (18 + x2)(x – 3)

x2 – x + 3 ≤ 18 + x2

-x ≤ 18 – 3

(-1)(-x ≤ 15)

x ≥ -15


INTERVALO DE SOLUCION: [-15, )






35. [(4x - 4)/x] + [(1 + x)/x2] ≤ [4x/(1 + x)] + [4/(x2 + x3)]

[4x – 4 + x(1 + x)]/x ≤ [4x + (x + x2)(4)]/x

(4x – 4 + x + x2)/x ≤ (4x + 4x + 4x2)/x

(x2 + 5x – 4)/x ≤ (4x2 + 8x)/x

x(x2 +5x – 4) ≤ x(4x2 + 8x)

x2 + 5x – 4 ≤ 4x2 + 8x

-4x2 + x2 + 5x - 8x – 4 ≤ 0

-3x2 – 3x – 4 ≤ 0

a= -3

b= -3

c= -4


b2 – 4ac

(-3)2 – 4(-3)(-4)

9 – 48

= -39 = -39 < 0= no tiene solución